Hello all,
I am new to openSUSE tumbleweed after a brief stint with arch and love it so far! I don’t know if this is entirely relevant but I am using Gnome 46 with X11 primarily due to some Wayland specific issues with certain applications like ungoogled chromium and flatpak Steam.
However, I cannot seem for the life of me to get my Scarlett 18i8 interface to work consistently. For example, when launching a game the audio will be distorted almost as if it has an extremely low bitrate and sample rate. After some troubleshooting I seem to think it’s because (at least under the information displayed by the alsa-scarlett-ui interface ( GitHub - geoffreybennett/alsa-scarlett-gui: alsa-scarlett-gui is a Gtk4 GUI for the ALSA controls presented by the Linux kernel Focusrite Scarlett2 Mixer Driver ) my sample rate is N/A.
Whenever viewing youtube videos for example, I will see it set to 48k and if I then launch a game - Cyberpunk 2077 to be specific - the audio will work correctly. After the video or game stops the sample rate returns to N/A. I have narrowed down most of the other audio problems to be game specific (for example V’s dialogue is much quieter than other NPCs… Jeez gives me flashbacks to the early days of when the game first dropped lol) since audio sounds normal in other applications. But is there a way to configure my interface to have a static internal sample rate even wtihout running applications? I swear this has happened by default with other OSes so I do not believe it is my hardware. I have also verified my routing and such are correct for my stereo speakers so I am suspecting its something to do with the underlying pipewire / pulseaudio / alsa stuff as openSUSE implements it.
I have set my default.clock.rate to 192000 and added the supported rates for the interface in default.clock.allowed-rates within my pipewire.conf config so am not sure why this is happening. Perhaps this is a fundamental misunderstanding on my part (and likely so) but in previous distros I have never seen this problem arise before.
If anyone else has experineced this problem before or knows of any good resouces to send my way that would be much appreciated. Or if someone would be willing to explain openSUSE’s audio implementatation in plain english so I may gain some intution on how to solve this problem. A good pipewire GUI would be nice as well however most I’ve seen online seem to have stopped being actively developed on.
Otherwise - and despite this hair pulling problem - I love openSUSE so far and I think my days of hopping around communities has finally reached its end!
Cheers! and thank you in advance I hope to see you all around the forums in the forseeable future!
# Daemon config file for PipeWire version "1.2.2" #
#
# Copy and edit this file in /etc/pipewire for system-wide changes
# or in ~/.config/pipewire for local changes.
#
# It is also possible to place a file with an updated section in
# /etc/pipewire/pipewire.conf.d/ for system-wide changes or in
# ~/.config/pipewire/pipewire.conf.d/ for local changes.
#
context.properties = {
## Configure properties in the system.
#library.name.system = support/libspa-support
#context.data-loop.library.name.system = support/libspa-support
#support.dbus = true
link.max-buffers = 64
#link.max-buffers = 16 # version < 3 clients can't handle more
#mem.warn-mlock = false
#mem.allow-mlock = true
#mem.mlock-all = false
#clock.power-of-two-quantum = true
#log.level = 2
#cpu.zero.denormals = false
#loop.rt-prio = -1 # -1 = use module-rt prio, 0 disable rt
#loop.class = data.rt
#thread.affinity = [ 0 1 ] # optional array of CPUs
#context.num-data-loops = 1 # -1 = num-cpus, 0 = no data loops
#
#context.data-loops = [
# { loop.rt-prio = -1
# loop.class = [ data.rt audio.rt ]
# #library.name.system = support/libspa-support
# thread.name = data-loop.0
# #thread.affinity = [ 0 1 ] # optional array of CPUs
# }
#]
core.daemon = true # listening for socket connections
core.name = pipewire-0 # core name and socket name
## Properties for the DSP configuration.
default.clock.rate = 192000
default.clock.allowed-rates = [ 44100, 48000, 88200, 96000, 176400, 192000 ]
#default.clock.quantum = 1024
#default.clock.min-quantum = 32
#default.clock.max-quantum = 2048
#default.clock.quantum-limit = 8192
#default.clock.quantum-floor = 4
#default.video.width = 640
#default.video.height = 480
#default.video.rate.num = 25
#default.video.rate.denom = 1
#
#settings.check-quantum = false
#settings.check-rate = false
# keys checked below to disable module loading
module.x11.bell = true
# enables autoloading of access module, when disabled an alternative
# access module needs to be loaded.
module.access = true
# enables autoloading of module-jackdbus-detect
module.jackdbus-detect = true
}
context.properties.rules = [
{ matches = [ { cpu.vm.name = !null } ]
actions = {
update-props = {
# These overrides are only applied when running in a vm.
default.clock.min-quantum = 1024
}
}
}
]
context.spa-libs = {
#<factory-name regex> = <library-name>
#
# Used to find spa factory names. It maps an spa factory name
# regular expression to a library name that should contain
# that factory.
#
audio.convert.* = audioconvert/libspa-audioconvert
avb.* = avb/libspa-avb
api.alsa.* = alsa/libspa-alsa
api.v4l2.* = v4l2/libspa-v4l2
api.libcamera.* = libcamera/libspa-libcamera
api.bluez5.* = bluez5/libspa-bluez5
api.vulkan.* = vulkan/libspa-vulkan
api.jack.* = jack/libspa-jack
support.* = support/libspa-support
video.convert.* = videoconvert/libspa-videoconvert
#videotestsrc = videotestsrc/libspa-videotestsrc
#audiotestsrc = audiotestsrc/libspa-audiotestsrc
}
context.modules = [
#{ name = <module-name>
# ( args = { <key> = <value> ... } )
# ( flags = [ ( ifexists ) ( nofail ) ] )
# ( condition = [ { <key> = <value> ... } ... ] )
#}
#
# Loads a module with the given parameters.
# If ifexists is given, the module is ignored when it is not found.
# If nofail is given, module initialization failures are ignored.
# If condition is given, the module is loaded only when the context
# properties all match the match rules.
#
# Uses realtime scheduling to boost the audio thread priorities. This uses
# RTKit if the user doesn't have permission to use regular realtime
# scheduling. You can also clamp utilisation values to improve scheduling
# on embedded and heterogeneous systems, e.g. Arm big.LITTLE devices.
{ name = libpipewire-module-rt
args = {
nice.level = -11
rt.prio = 88
#rt.time.soft = -1
#rt.time.hard = -1
#uclamp.min = 0
#uclamp.max = 1024
}
flags = [ ifexists nofail ]
}
# The native communication protocol.
{ name = libpipewire-module-protocol-native
args = {
# List of server Unix sockets, and optionally permissions
#sockets = [ { name = "pipewire-0" }, { name = "pipewire-0-manager" } ]
}
}
# The profile module. Allows application to access profiler
# and performance data. It provides an interface that is used
# by pw-top and pw-profiler.
{ name = libpipewire-module-profiler }
# Allows applications to create metadata objects. It creates
# a factory for Metadata objects.
{ name = libpipewire-module-metadata }
# Creates a factory for making devices that run in the
# context of the PipeWire server.
{ name = libpipewire-module-spa-device-factory }
# Creates a factory for making nodes that run in the
# context of the PipeWire server.
{ name = libpipewire-module-spa-node-factory }
# Allows creating nodes that run in the context of the
# client. Is used by all clients that want to provide
# data to PipeWire.
{ name = libpipewire-module-client-node }
# Allows creating devices that run in the context of the
# client. Is used by the session manager.
{ name = libpipewire-module-client-device }
# The portal module monitors the PID of the portal process
# and tags connections with the same PID as portal
# connections.
{ name = libpipewire-module-portal
flags = [ ifexists nofail ]
}
# The access module can perform access checks and block
# new clients.
{ name = libpipewire-module-access
args = {
# Socket-specific access permissions
#access.socket = { pipewire-0 = "default", pipewire-0-manager = "unrestricted" }
# Deprecated legacy mode (not socket-based),
# for now enabled by default if access.socket is not specified
#access.legacy = true
}
condition = [ { module.access = true } ]
}
# Makes a factory for wrapping nodes in an adapter with a
# converter and resampler.
{ name = libpipewire-module-adapter }
# Makes a factory for creating links between ports.
{ name = libpipewire-module-link-factory }
# Provides factories to make session manager objects.
{ name = libpipewire-module-session-manager }
# Use libcanberra to play X11 Bell
{ name = libpipewire-module-x11-bell
args = {
#sink.name = "@DEFAULT_SINK@"
#sample.name = "bell-window-system"
#x11.display = null
#x11.xauthority = null
}
flags = [ ifexists nofail ]
condition = [ { module.x11.bell = true } ]
}
{ name = libpipewire-module-jackdbus-detect
args = {
#jack.library = libjack.so.0
#jack.server = null
#jack.client-name = PipeWire
#jack.connect = true
#tunnel.mode = duplex # source|sink|duplex
source.props = {
#audio.channels = 2
#midi.ports = 1
#audio.position = [ FL FR ]
# extra sink properties
}
sink.props = {
#audio.channels = 2
#midi.ports = 1
#audio.position = [ FL FR ]
# extra sink properties
}
}
flags = [ ifexists nofail ]
condition = [ { module.jackdbus-detect = true } ]
}
]
context.objects = [
#{ factory = <factory-name>
# ( args = { <key> = <value> ... } )
# ( flags = [ ( nofail ) ] )
# ( condition = [ { <key> = <value> ... } ... ] )
#}
#
# Creates an object from a PipeWire factory with the given parameters.
# If nofail is given, errors are ignored (and no object is created).
# If condition is given, the object is created only when the context properties
# all match the match rules.
#
#{ factory = spa-node-factory args = { factory.name = videotestsrc node.name = videotestsrc node.description = videotestsrc "Spa:Pod:Object:Param:Props:patternType" = 1 } }
#{ factory = spa-device-factory args = { factory.name = api.jack.device foo=bar } flags = [ nofail ] }
#{ factory = spa-device-factory args = { factory.name = api.alsa.enum.udev } }
#{ factory = spa-node-factory args = { factory.name = api.alsa.seq.bridge node.name = Internal-MIDI-Bridge } }
#{ factory = adapter args = { factory.name = audiotestsrc node.name = my-test node.description = audiotestsrc } }
#{ factory = spa-node-factory args = { factory.name = api.vulkan.compute.source node.name = my-compute-source } }
# A default dummy driver. This handles nodes marked with the "node.always-process"
# property when no other driver is currently active. JACK clients need this.
{ factory = spa-node-factory
args = {
factory.name = support.node.driver
node.name = Dummy-Driver
node.group = pipewire.dummy
node.sync-group = sync.dummy
priority.driver = 20000
#clock.id = monotonic # realtime | tai | monotonic-raw | boottime
#clock.name = "clock.system.monotonic"
}
}
{ factory = spa-node-factory
args = {
factory.name = support.node.driver
node.name = Freewheel-Driver
priority.driver = 19000
node.group = pipewire.freewheel
node.sync-group = sync.dummy
node.freewheel = true
#freewheel.wait = 10
}
}
# This creates a new Source node. It will have input ports
# that you can link, to provide audio for this source.
#{ factory = adapter
# args = {
# factory.name = support.null-audio-sink
# node.name = "my-mic"
# node.description = "Microphone"
# media.class = "Audio/Source/Virtual"
# audio.position = "FL,FR"
# monitor.passthrough = true
# }
#}
# This creates a single PCM source device for the given
# alsa device path hw:0. You can change source to sink
# to make a sink in the same way.
#{ factory = adapter
# args = {
# factory.name = api.alsa.pcm.source
# node.name = "alsa-source"
# node.description = "PCM Source"
# media.class = "Audio/Source"
# api.alsa.path = "hw:0"
# api.alsa.period-size = 1024
# api.alsa.headroom = 0
# api.alsa.disable-mmap = false
# api.alsa.disable-batch = false
# audio.format = "S16LE"
# audio.rate = 48000
# audio.channels = 2
# audio.position = "FL,FR"
# }
#}
# Use the metadata factory to create metadata and some default values.
#{ factory = metadata
# args = {
# metadata.name = my-metadata
# metadata.values = [
# { key = default.audio.sink value = { name = somesink } }
# { key = default.audio.source value = { name = somesource } }
# ]
# }
#}
]
context.exec = [
#{ path = <program-name>
# ( args = "<arguments>" | [ <arg1> <arg2> ... ] )
# ( condition = [ { <key> = <value> ... } ... ] )
#}
#
# Execute the given program with arguments.
# If condition is given, the program is executed only when the context
# properties all match the match rules.
#
# You can optionally start the session manager here,
# but it is better to start it as a systemd service.
# Run the session manager with -h for options.
#
#{ path = "/usr/bin/pipewire-media-session" args = ""
# condition = [ { exec.session-manager = null } { exec.session-manager = true } ] }
#
# You can optionally start the pulseaudio-server here as well
# but it is better to start it as a systemd service.
# It can be interesting to start another daemon here that listens
# on another address with the -a option (eg. -a tcp:4713).
#
#{ path = "/usr/bin/pipewire" args = [ "-c" "pipewire-pulse.conf" ]
# condition = [ { exec.pipewire-pulse = null } { exec.pipewire-pulse = true } ] }
]